Clear The Air News Tobacco Blog Rotating Header Image

Electronic cigarette effectiveness and abuse liability: predicting and regulating nicotine flux


Electronic cigarettes (ECIGs) comprise an aerosolized nicotine delivery product category that provides consumers with probably unprecedented control over extensive features and operating conditions, allowing a wide range of nicotine yields to be obtained. Depending on the combination of such ECIG variables as electrical power input, geometry, liquid composition, and puff behavior, ECIG users can extract in a few puffs far more or far less nicotine than with a conventional combustible cigarette. These features of ECIG design and use present challenges for public health policy, central among which is the question of how to regulate nicotine delivery. In this commentary, we propose a conceptual framework intended to provide a convenient approach for evaluating and regulating the nicotine emitted from ECIGs. This framework employs nicotine flux to account for the total dose and rate at which nicotine reaches the user, 2 key factors in drug abuse liability. The nicotine flux is the nicotine emitted per puff second (e.g., mg/s) by a given ECIG design under given use conditions, and it can be predicted accurately using physical principles. We speculate that if the flux is too low, users likely will abandon the device and maintain conventional tobacco product use. Also, we speculate that if the flux is too high, individuals may suffer toxic side effects and/or the device may have higher-than-necessary abuse liability. By considering ECIG design, operation conditions, liquid composition, and puff behavior variables in combination, we illustrate how ECIG specifications can be realistically mandated to result in a target flux range.


Introduction Electronic cigarettes (ECIGs) aerosolise a liquid that usually contains propylene glycol and/or vegetable glycerine, flavourants and the dependence-producing drug, nicotine, in various concentrations. This laboratory study examined the relationship between liquid nicotine concentration and plasma nicotine concentration and puffing behaviour in experienced ECIG users.

Methods Sixteen ECIG-experienced participants used a 3.3-Volt ECIG battery attached to a 1.5-Ohm dual-coil ‘cartomiser’ loaded with 1 mL of a flavoured propylene glycol/vegetable glycerine liquid to complete four sessions, at least 2 days apart, that differed by nicotine concentration (0, 8, 18 or 36 mg/mL). In each session, participants completed two 10-puff ECIG-use bouts (30 s puff interval) separated by 60 min. Venous blood was sampled to determine plasma nicotine concentration. Puff duration, volume and average flow rate were measured.

Results Immediately after bout 1, mean plasma nicotine concentration was 5.5 ng/mL (SD=7.7) for 0 mg/mL liquid, with significantly (p<0.05) higher mean concentrations observed for the 8 (mean=17.8 ng/mL, SD=14.6), 18 (mean=25.9 ng/mL, SD=17.5) and 36 mg/mL (mean=30.2 ng/mL; SD=20.0) concentrations; a similar pattern was observed for bout 2. For bout 1, at 36 mg/mL, the mean post- minus pre-bout difference was 24.1 ng/mL (SD=18.3). Puff topography data were consistent with previous results and revealed few reliable differences across conditions.

Discussion This study demonstrates a relationship between ECIG liquid nicotine concentration and user plasma nicotine concentration in experienced ECIG users. Nicotine delivery from some ECIGs may exceed that of a combustible cigarette. The rationale for this higher level of nicotine delivery is uncertain.

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>