

The hazards and benefits associated with smoking and smoking cessation in Asia: a meta-analysis of prospective studies

K Nakamura, R Huxley, A Ansary-Moghaddam and M Woodward

Tob. Control 2009;18;345-353; originally published online 16 Jul 2009; doi:10.1136/tc.2008.028795

Updated information and services can be found at: http://tobaccocontrol.bmj.com/cgi/content/full/18/5/345

These	incl	lude:
		aac.

References	This article cites 79 articles, 31 of which can be accessed free at: http://tobaccocontrol.bmj.com/cgi/content/full/18/5/345#BIBL
Rapid responses	You can respond to this article at: http://tobaccocontrol.bmj.com/cgi/eletter-submit/18/5/345
Email alerting service	Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Notes

To order reprints of this article go to: http://journals.bmj.com/cgi/reprintform

The hazards and benefits associated with smoking and smoking cessation in Asia: a meta-analysis of prospective studies

K Nakamura,^{1,2} R Huxley,² A Ansary-Moghaddam,^{2,3} M Woodward^{2,4}

ABSTRACT

¹ Department of Epidemiology and Public Health, Kanazawa Medical University, Uchinada, Japan; ² Nutrition and Lifestyle Division, The George Institute for International Health, Sydney, Australia; ³ Department of Epidemiology and Biostatistics, Zahedan University of Medical Sciences School of Health, Zahedan, Iran; ⁴ Department of Medicine, Mount Sinai School of Medicine, New York University, New York, USA

Correspondence to: Dr Koshi Nakamura, Department of Epidemiology and Public Health, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan; knaka@kanazawa-med. ac.jp

Received 20 November 2008 Accepted 17 June 2009 Published Online First 16 July 2009 **Objective:** To provide the most reliable evidence as to the nature of the associations between smoking and cause-specific illness, as well as the expected benefits from quitting smoking, in studies conducted in Asia, where smoking remains popular among men. **Data sources:** Studies published between January 1966 and October 2008, identified in the Medline search strategy with medical subject headings, in addition to studies from the Asia Pacific Cohort Studies Collaboration. **Study selection:** Studies were considered to be relevant if they were prospective studies, in an Asian setting that reported on the association between smoking, quitting and cause-specific illness.

Data extraction: Two reviewers independently screened all identified articles for possible inclusion and extracted data.

Data synthesis: The pooled relative risks (RRs) for incidence or mortality, comparing current to never smokers were always significantly higher than unity; the highest was for lung cancer: 3.54 (95% confidence interval 3.00 to 4.17). The pooled RRs for former smokers (compared to never smokers) were also always significantly higher than unity, and were lower than in current smokers, for coronary heart disease, stroke, lung and upper aero-digestive tract cancer. Only for respiratory disease was the RR for former smokers higher than that for current smokers.

Conclusions: This meta-analysis has shown that, despite the relative immaturity of the smoking epidemic in Asia, smoking is unquestionably a major contributor to ill health and death. However, the beneficial effects of quitting are not yet always apparent, most probably because quitting is a consequence of ill health and the relative unpopularity of smoking cessation in many Asian populations.

The seminal work of Doll and Hill^{1 2} in the 1950s convincingly demonstrated the causal role of smoking in lung cancer and prompted a sharp decline in the popularity of the habit, particularly in countries such as the United Kingdom and the United States.³⁻⁵ Fifty years on, thanks largely to highly effective mass-media campaigns,^{4 5} there is now widespread acceptance among most Western populations of the causal role of smoking in a plethora of diseases, such as many cancers, cardiovascular and respiratory diseases.^{6 7} Combined with broad legislative measures and tobacco tax policies,^{4 5} such campaigns have been instrumental in convincing hundreds of thousands of smokers to quit and dissuading thousands of others from taking up the habit.

Despite these enormous efforts to curb the smoking pandemic, it remains the second leading

cause of death (after high blood pressure), accounting for 12% of all deaths worldwide, as well as one of the major causes of disability.89 Paradoxically, most of these deaths occur in Western populations that now have some of the lowest smoking rates (typically less than 30% in men), whereas the burden of smokingrelated illness in Asia (where between 50-60% of men smoke depending on the country $^{\scriptscriptstyle 3\!-\!5}$ $^{\scriptscriptstyle 10}\!)$ remains disproportionately low.11 This partly reflects the often long latency period between smoking and onset of illness, but over the coming decades this global pattern of morbidity and mortality is likely to reverse if current smoking trends in Asia persist. Moreover, the enormous public health burden that is the result of smoking will have a substantial negative impact on a country's economy, an effect that will be particularly great in Asian countries relative to the West over the coming decades.⁴ ¹²

Although there are several countries in Asia where the prevalence of smoking among men has been on the decline in recent years, including Hong Kong, Thailand, Singapore and Japan,^{3-5 10 13} in other countries such as China and Indonesia, there is no evidence to indicate a similar decline in the popularity of the habit. There are perhaps two main reasons for this, a low level of awareness as to the harms associated with the habit⁷ ^{14–16} and a lack of population-wide smoking cessation strategies. An essential prerequisite for any smoking cessation campaign is a sound evidence base. To this end, we conducted a systematic review of the literature for all Asian studies that reported on the association between smoking, quitting and illness in order to provide the most reliable evidence as to the nature of the associations between smoking and causespecific illness, as well as the expected benefits of quitting smoking, in studies conducted in Asia.

METHODS

Search strategy

We performed a systematic search for relevant articles published from January 1966 to October 2008, using Medline. We searched with medical subject headings (MeSH): ([Smoking (MeSH)] or [Tobacco (MeSH)] or [Tobacco use cessation (MeSH)] or [Smoking cessation (MeSH)]) and ([Cardiovascular diseases (MeSH), including MeSH terms found below this term in the MeSH tree] or [Neoplasms (MeSH), including MeSH terms found below this term in the MeSH tree] or [Respiratory tract diseases (MeSH), including MeSH terms found below this term in the MeSH tree]) and ([Asia (MeSH), including MeSH terms found below this term in the MeSH tree]) and ([Asia (MeSH), including MeSH terms found below this term in the MeSH tree]). We restricted the search to English language articles and studies of human subjects. We read the titles and abstracts of all the articles identified in the Medline search to exclude any articles that seemed irrelevant. The full texts of the remaining articles were read to determine if they met our criteria for inclusion. In addition, we manually searched for extra relevant articles in the reference lists of the identified articles and other publications.

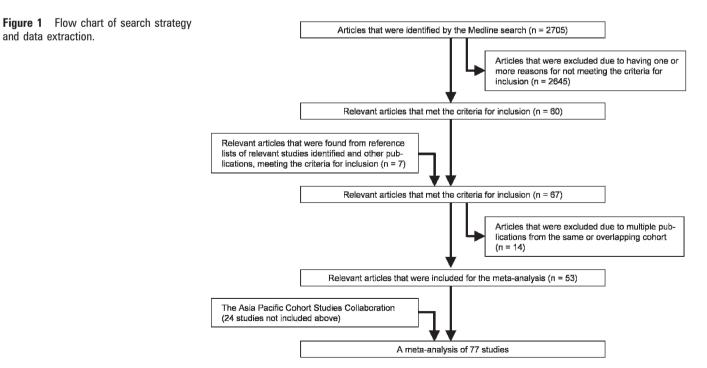
Data extraction

Articles were considered to be relevant if they were prospective studies (cohort studies or nested case-control studies), in an Asian setting, that calculated the approximate relative risks (RRs) (that is, hazard ratios, rate ratios or odds ratios) for coronary heart disease (CHD), stroke, site-specific cancer and respiratory disease incidence and/or mortality in both current smokers and former smokers with never smokers serving as the referent. Articles were excluded if they did not provide the RR with 95% confidence interval in both current smokers and former smokers with adjustment at least for age. Articles were also excluded if the study population solely consisted of individuals with a particular high-risk condition (for example, high blood pressure or diabetes) or of hospital patients. In the case of multiple publications from the same or overlapping cohorts, we selected only the article with the largest personyears of follow-up or, if the articles had exactly the same person-years of follow-up, only the article with the most exhaustive level of adjustment for potential confounders.

The Asia Pacific Cohort Studies Collaboration (APCSC) is a collaboration of prospective studies in the Asia-Pacific region^{17 18} that has previously published results on smoking, quitting and several diseases.^{19 20} For the current work we included only Asian studies in APCSC that were not otherwise included in the search of published literature, to avoid duplication.

Statistical analysis

and data extraction.


Outcomes treated in this article are CHD, stroke, cancer and respiratory diseases. Cancer was classified into four categories: lung cancer, upper aero-digestive tract (UADT) cancer, gastric cancer and other cancers. No other cancers, or subsets within our chosen classifications, provided large enough numbers of events for reliable estimation of associations. In most relevant articles, including APCSC, outcomes were defined using the International Classification of Diseases or the International Classification of Diseases for Oncology.

The primary analysis was to estimate pooled RRs for incidence (that is, fatal or non-fatal events) and mortality (that is, where fatal events alone were reported) combined for each of the seven diseases. Should an article report RRs for both incidence and mortality, only the RR for incidence was used for the primary analysis. As a secondary analysis, summary estimates were obtained for mortality only. Further analyses repeated the above for separate countries. Again, to avoid small numbers, and thus unreliable results, only China, Japan and Korea were separated, although we included a category of other Asian countries for completeness.

For current smokers and former smokers, pooled RRs and their corresponding 95% confidence intervals for the outcomes of interest were estimated using a random effects model with inverse variance weighting.²¹ Statistical heterogeneity within studies was assessed using the Cochran's Q test for heterogeneity and Higgins's I² statistic.²¹ I² is interpreted as the percentage of variability between studies due to heterogeneity, rather than chance, with 0% representing no heterogeneity. These meta-analyses were carried out using Stata, version 9.

RESULTS

Our search strategy identified a total of 2705 articles (fig 1), of which 60 were considered as relevant studies that met our criteria for inclusion. Seven additional relevant articles were identified from reference lists. Of these 67 relevant articles, 14 articles were excluded because of multiple publications. In addition, APCSC provided 24 additional cohort studies. In all, this gave 77 individual studies for inclusion in the metaanalysis: 73 cohort studies and four nested case-control studies.

First author/		Initial vear of	Dortioinonto	Age range	Current	Quit	Max FUP	Study	Outcomes		Events	
publication year [ref]	Country	survey	Participants (n)	(years)	(%)	(%)	duration (years)	design	Туре	Disease	events (n)	Adjustments
Ross/1997 ²²	China	1986	(M) 1470	45–64			7	Nested	Mor	Stroke	245	1, 3, 6, 7, 9, 1
'uan/2001 ²³	China	1986	(M) 831	45–64			11	Nested	Inci	Cancer (lung)	209	1, 10
⁻ an/2008 ²⁴	China	1986	(M) 18 244	45–64	50	12	20	Cohort	Inci	Cancer (oesophageal)	101	1, 3, 4, 6, 10
Lam/2002 ²⁵	China	1987	(M) 1267	60—	33	52	12	Cohort	Mor	Coronary heart disease	52	1, 3, 5, 6, 7, 8 10
										Stroke	37	
										Cancer (lung)	40	
										Respiratoy diseases	43	
Astrakianakis/2007 ²⁶	China	1989	(F) 3812	NA			10	Nested	Inci	Cancer (lung)	628	1
Kelly/2008 ²⁷	China	1991	(M) 76 134	40–	59	6	10	Cohort	Inci	Stroke	3869	1, 3, 5, 6, 7, 9 10
			(F) 78 997		13	5					2911	
									Mor	Stroke	2300	
											1679	
Qiao/1997 ²⁸	China	1992	(M) 7867	40-	80	12	3	Cohort	Inci	Cancer (lung)	241	1
Qiu/2003 ²⁹	China	1994	50 252	40-	40	7	6	Cohort	Mor	Stroke	627	1, 2, 3, 4, 6, 7
												10
Shibata/199030	Japan	1960	(M) 642	40-69	76	11	28	Cohort	Mor	Cancer (liver)	22	1
Akiba/1994 ³¹	Japan	1963	61 505	NA	NA	NA	17	Cohort	Inci	Cancer (lung)		1, 2, 10
										Cancer (pharynx, oesophagus, nasal cavity)	198	
										Cancer (stomach)	1513	
										Cancer (colon, rectum, liver,	2705	
										gallbladder, pancreas, skin, breast, uterus,		
										ovary, prostate, bladder, kidney, ureter,		
										brain, thyroid, lymphoma, myeloma, leukaemia)		
Kono/1985 ³²	Japan	1965	(M) 5438	NA	68	21	12	Cohort	Mor	Coronary heart disease	121	1
										Stroke	154	
										Cancer (lung)	43	
										Cancer (upper aero- digestive)	17	
										Cancer (gastric)	79	
Kinjo/1999 ³³	Japan	1965	223 170	40–69	NA	NA	16	Cohort	Mor	Stroke	11 030	1, 2, 10
Marugame/2005 ³⁴	Japan	1983	(M) 44 451	40–79	58	30	10	Cohort	Mor	Cancer (lung)	598	1, 10
			(F) 43 702		12	24						
Koizumi/2004 ³⁵	Japan	1984	(M) 29 392	40-	60	24	9	Cohort	Inci	Cancer (gastric)	451	1, 3, 4, 6, 10
Kato/1992 ³⁶	Japan	1985	9753	30–	NA	NA	5	Cohort	Mor	Cancer (stomach)	57	1, 2, 3, 4, 10
Mizoue/2000 ³⁷	Japan	1986	(M) 4050	40-	50	38	9	Cohort	Mor	Cancer (lung)	42	1, 3, 10
										Cancer (stomach)	53	
										Cancer (liver)	59	
Pham/2007 ³⁸	Japan	1986	(M) <4254	40–	NA	NA	17	Cohort	Mor	Stroke	192	1, 2, 3, 4, 6, 7 9, 10
			(F) <5397									
Pham/2007 ³⁹	Japan	1986	(M) 3996	40–	49	38	17	Cohort	Mor	Cancer (lung)	NA	1, 3, 4, 6, 7, 9, 10
			(F) 4133		8	33				Respiratory disease	231	
lso/2005 ⁴⁰	Japan	1988	(M) 41 782	40–79	54	32	11	Cohort	Mor	Coronary heart disease	547	1, 3, 4, 5, 6, 7 9, 10
			(F) 52 901		6	23				Stroke	1248	
Ando/200341	Japan	1988	(M) 45 010 (E) 55 726	40–79	53 6	33 24	9	Cohort	Mor	Cancer (lung)	597	1
Sakata/200542	lanon	1000	(F) 55 726	10 70		24 33	11	Cohert	Mar	Cancor (accorbogo-1)	100	1 10
Sakata/2005 ⁴²	Japan	1988	(M) 42 578	40-79	53	33	11	Cohort	Mor	Cancer (oesophageal)		1, 10
Fujino/200543	Japan	1988	(M) 43 482	40–79	53 NA	33 NA	11	Cohort	Mor	Cancer (stomach)	/5/	1, 3, 4, 10
		1000	(F) 54 580	40 70	NA	NA	0	Calcut	la c'	Conner (action and B	040	1 0 4 5 0 4
M/=L=:/000044		1988	(M) 25 260	40–79	52	34	9	Cohort	Inci	Cancer (colon, rectal)	612	1, 3, 4, 5, 6, 10
Wakai/200344	Japan	1500				0.4						
Wakai/2003 ⁴⁴ Fujita/2006 ⁴⁵	Japan Japan	1988	(F) 34 619 2595	40-79	5	24	11	Nested	Mor	Cancer		1, 2, 3, 9, 10

Table 1 Characteristics of the 53 published studies and the Asia Pacific Cohort Studies Collaboration involving 24 studies

Review article

Table 1 Continued

First author/		Initial year of	Participants	Age range	Current	Quit	Max FUP duration	Study	Outcomes		Events	
publication year [ref]	Country	survey	(n)	(years)	(%)	(%)	(years)	design	Туре	Disease	events (n)	Adjustments
Yagyu/200846	Japan	1988	(M) <47 756 (F) <65 740	40–89	53 6	34 24	15	Cohort	Mor	Cancer (gallbladder)	66 74	1, 3, 10
Lin/200247	Japan	1988	(I) <03 740 (M) 44 646	40–79	57	33	9	Cohort	Mor	Cancer (pancreatic)	225	1, 6, 9, 10
2002	oapan	1500	(N) 44 040 (F) 54 881	40-75	9	31	5	CONDIC	WIOI	Gancer (pancreatic)	225	1, 0, 3, 10
Washio/200548	Japan	1988	114 517	40—	NĂ	NA	11	Cohort	Mor	Cancer (kidney)	44	1, 2
Niwa/200549	Japan	1988	(F) 34 639	40-79	5	24	11	Cohort	Inci	Cancer (ovarian)		1, 3, 6, 10
Lin/2008 ⁵⁰	•	1988		40–79 40–79	5	24	13	Cohort	Inci	Cancer (breast)		1, 3, 5, 6, 10
Ide/2008 ⁵¹	Japan	1988	(F) 34 401	40-79 40-79	53	33	NA	Cohort	Mor	Cancer (oral,	208 41	1, 3, 5, 6, 10 1, 3, 4
	Japan		(M) 34 136							pharyngeal)		
Baba/200652	Japan	1990	(M) 19 782	40–59	53	30	12	Cohort	Inci	Coronary heart disease	326	1, 3, 4, 7, 8, 9 10
			(F) 21 500		6	23						
Mannami/2004⁵³	Japan	1990	(M) 19 782	40–59	53	30	12	Cohort	Inci	Stroke	1149	1, 3, 4, 5, 6, 9 10
			(F) 21 500		6	23						
Sobue/2002 ⁵⁴	Japan	1990	(M) 44 533	40–69	52	31	10	Cohort	Inci	Cancer (lung)	332	1, 10
	•		(F) 48 281		6	19						
Sasazuki/2002 ⁵⁵	Japan	1990	(M) 19 576	40–59	53	30	10	Cohort	Inci	Cancer (gastric)	273	1, 3, 4, 6, 10
Otani/200356	Japan	1990	(M) 42 540	40–69	52	31	10	Cohort	Inci	Cancer (colorectal)	706	1, 3, 5, 6, 10
51d11/2003	Japan	1330	(N) 42 540 (F) 47 464	40-03	6	19	10	CONDIL	IIICI		700	1, 3, 3, 0, 10
Luo/2007 ⁵⁷	Japan	1990	(M) 47 499	40–69	52	32	14	Cohort	Inci	Cancer (pancreatic)	224	1, 3, 5, 6, 9, 10
2007	oupun	1000	(F) 52 171	10 00	6	20		oonon	mor	ounoor (punorouno)		1, 0, 0, 0, 0, 0, 1
Hanaoka/2005⁵®	Japan	1990	(F) 21 781	40–59	6	23	10	Cohort	Inci	Cancer (breast)	180	1, 3, 6, 10
Nishino/2004 ⁵⁹	Japan	1990	(M) 21 695	40–55 40–64	62	24	7	Cohort	Inci	Cancer (lung)	129	1, 3, 4, 5, 10
Akhter/2007 ⁶⁰	•	1990	(M) 21 095 (M) 21 199	40–64 40–64	NA	NA	10	Cohort	Inci	Cancer (colorectal)	307	1, 3, 4, 3, 10
Fujisawa/200861	Japan Japan	1990	(M) 275	40–04 80	23	67	4	Cohort	Mor	Respiratory illness	21	(1) 6, 7, 8, 9,
Jee/1999 ⁶²	Korea	1990	(M) 106 745	35–59	58	27	6	Cohort	Inci	lschemic heart	1006	10 1, 7, 8, 9
000/1000	Norcu	1550	(11) 100 745	00 00	50	27	0	oonore	inci	disease		1, 7, 0, 3
										Cerebrovascular disease	1364	
Jee/200463	Korea	1992	(M) 830 139	30–95	57	29	9	Cohort	Inci	Cancer (lung)	4445	1
			(F) 382 767		5	32				Cancer (oesophageal, larynx)	1344	
										Cancer (stomach)	7316	
										Cancer (colon, liver,	11 915	
										bile duct, pancreatic,	11 010	
										prostate, kidney,		
										bladder, brain,		
										thyroid, leukaemia)		
									Mor	Cancer (lung)	4238	
										Cancer (oesophageal, larynx)	834	
										Cancer (stomach)	4508	
										Cancer (colon, liver,	8123	
										bile duct, pancreatic,		
										prostate, kidney,		
										bladder, brain, thyroid, leukaemia,		
										breast)		
Odongua/2007 ⁶⁴	Korea	1992	(F) 475 398	30–95	4	33	12	Cohort	Inci	Cancer (cervical)	2523	1, 3, 6, 10
<u>.</u>			••						Mor	Cancer (cervical)	209	
Jee/200765	Korea	1993	(F) 134 399	40–69	10	30	10	Cohort	Inci	Ischaemic heart	4534	1, 3, 7, 8, 9
										disease	7001	
										Cerebrovascular disease	7961	
Ho/1999 ⁶⁶	Hong Kong	1991	(M) 999	70–	25	64	3	Cohort	Mor	Respiratory diseases	157	1, 3, 6, 7, 10
	gg		(F) 1033		8	69	Ū	0011011				
Lam/200767	Hong Kong	1998	(M) 18 162	65–	20	67	5	Cohort	Mor	Coronary heart	413	1, 3, 5, 6, 7, 8
						_				disease		9, 10
			(F) 36 052		4	67				Stroke	381	
										Cancer (lung)	502	
										Respiratory diseases	584	
Jayalekshmy/200868		1990		30–84	48	19	8	Cohort		noophatory alooadoo		

Continued

Table 1 Continued

First author/ publication year [ref] Cou		lnitial year of survey	Participants (n)	Age	Current (%)	Quit (%)	Max FUP duration (years)		Outco	mes	Events (n)	Adjustments
	Country			range (years)				Study design	Туре	Disease		
Yuan/200369	Singapore	1993	62 392	45–74	20	36	7	Cohort	Inci	Cancer (lung)	482	1, 2, 10
Tsong/2007 ⁷⁰	Singapore	1993	63 257	45–74	19	36	10	Cohort	Inci	Cancer (colon, rectal)	845	1, 2, 3, 5, 6, 9, 10
Friborg/2007 ⁷¹	Singapore	1993	61 320	45–74	20	36	12	Cohort	Inci	Cancer (nasopharyngeal, other oropharyngeal)	248	1, 2, 3, 4, 10
Chen/200471	Taiwan	1985	10 589	NA	27	28	16	Cohort	Inci	Cancer (lung)	138	1, 2, 3, 10
Hsu/200473	Taiwan	1989	4048	60-	35	31	7	Cohort	Inci	Heart disease	NA	1, 2, 10
										Stroke	NA	
										Lower respiratory tract disease	NA	
Wen/2005 ⁷⁴	Taiwan	1989	(M) 30 244	35–	29	32	12	Cohort	Mor	lschaemic heart disease	NA	1
										Cerebrovascular disease	NA	
										Cancer (lung)	NA	
										Cancer (stomach)	NA	
										Cancer (liver)	NA	
										Respiratory diseases	NA	
Asia Pacific	China	1960s-	(M) 175 906	20-	59	7	3–25	Cohort	Mor	Coronary heart disease	775	1, 2
Cohort Studies	Japan	1990s	(F) 77 058		5	19				Stroke	1519	
Collaboration (24 studies)	Hong Kong Taiwan Singapore Thailand									Cancer (lung)	843	

The rate of current smokers was defined as the number of current smokers among total participants. The rate of quitters was defined as the number of former smokers among ever smokers. The rate of current smokers and quitters were not presented for nested case-control studies.

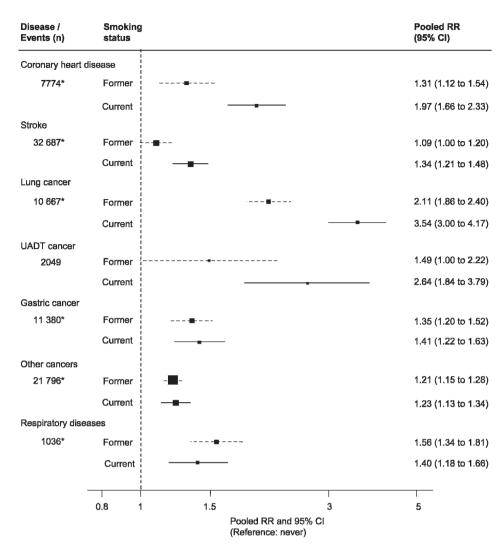
Adjustments: 1, age; 2, sex; 3, alcohol; 4, diet; 5, exercise (or walking); 6, body mass index; 7, hypertension (or blood pressure); 8, dyslipidaemia (or serum cholesterol, triglycerides); 9, diabetes (or blood sugar); 10, others.

For the Asia Pacific Cohort Studies Collaboration, the initial year of baseline survey and the maximum duration of follow-up varied by participating study.

Current, current smokers; F, female; Inci, incidence; M, male; Max FUP, maximum duration of follow-up; Mor, mortality; NA, not available; Quit, quitters.

The characteristics of these studies are summarised in table 1, according to country and initial year of baseline survey.^{22–74} Of the 77 studies, 42 studies were from Japan; 16 from China, five from Singapore, five from Taiwan, four from Korea, three from Hong Kong, one from India and one from Thailand. In most studies, the prevalence of current smoking among men was over 50%, whereas for women it was typically below 10%. In the 1990s, China had a higher rate of current smokers (defined as the number of current smokers among total participants) and a lower rate of quitters (defined as the number of former smokers among ever smokers) among men, compared to Japan and Korea.

The pooled RRs for incidence or mortality, comparing current to never smokers were always significantly higher than unity, ranging from a value of 1.23 for other cancers to 3.54 for lung cancer (fig 2). The pooled RRs for former smokers (compared to never smokers) were also always significantly higher than unity, but were lower than in current smokers for CHD, stroke, lung cancer and UADT cancer, although not always significantly so. Former smokers had much the same risk as never smokers for gastric and other cancers and for respiratory diseases. The pooled RRs for mortality presented a similar pattern to the pooled RRs for incidence and mortality combined (data not shown). There was a high degree of heterogeneity in the estimates between studies for all except other cancers and respiratory diseases. With these two exceptions, I^2 statistics ranged from 32% to 89% and all Q tests were significant at the 10% level. This justifies the use of random effects methodology.


In a sensitivity analysis in which the four nested casecontrol studies were excluded, including one stroke study, two lung cancer studies and one liver cancer study, the pooled RR (95% confidence interval) for current smokers and former smokers (compared to never smokers) was 1.36 (1.23 to 1.50) and 1.10 (1.01 to 1.21) for stroke, 3.48 (2.95 to 4.10) and 2.11 (1.86 to 2.04) for lung cancer and 1.23 (1.13 to 1.34) and 1.22 (1.16 to 1.24) for other cancers, respectively. These results were broadly similar to those shown in figure 2, indicating that these studies did not bias the overall summary estimates.

In country-specific analyses, the pooled RRs (compared to never smokers) from studies conducted in Japan and Korea tended to be lower in former smokers than in current smokers for CHD, stroke, lung cancer, UADT cancer and respiratory diseases (table 2). However, former smokers had higher pooled RRs compared with current smokers for respiratory diseases in China and for stroke and respiratory diseases in other Asian countries, although the pooled RRs for CHD, stroke (in China), lung cancer and UADT cancer were lower in former, than current, smokers (table 2).

DISCUSSION

In the present study, we have provided the most reliable estimates to date as to the health hazards of smoking and the benefits of quitting for various diseases in Asian populations. Our summary estimates indicate that smoking is certainly hazardous for cardiovascular diseases (especially CHD), cancer **Review article**

Figure 2 Pooled relative risks (RRs) and 95% confidence intervals (CIs) for incidence and mortality combined in former smokers (broken lines) and current smokers (solid lines) with never smokers serving as the referent. Upper aerodigestive tract (UADT) cancer included oesophageal, oral, nasopharyngeal and laryngeal cancer. Other cancers included colon, rectum, liver, gallbladder, pancreas, skin, breast, uterus, ovary, prostate, bladder, kidney, ureter, brain, thyroid cancer, lymphoma, multiple myeloma and leukaemia. Asterisks indicate that one or two studies did not report the number of events.

(especially lung cancer and UADT cancer) and respiratory diseases in Asia. Importantly, in most instances, we were able to show that quitting smoking reverses the harmful effects of smoking on most diseases that are closely associated with smoking, except that we were unable to show these benefits completely for China. One explanation of why the beneficial effects of quitting smoking were not wholly apparent in Chinese studies may have been because of the underlying presence of disease in smokers who had reportedly quit smoking. In support of this, there is some evidence to suggest that the reasons for quitting smoking differ considerably between developed and developing countries. In the former, smokers are more likely to quit for health reasons,⁷⁵ whereas in developing countries, where the hazards of smoking are much less widely known, the primary reason for quitting is ill health.¹⁵ Consequently, the beneficial effects of smoking cessation are likely to be underestimated among such individuals.^{20 76 77}

Our overall summary estimates are specific to Asian populations (who have many different physiological and non-physiological characteristics from Western populations), but even among these studies, there was evidence of significant heterogeneity of the impact of smoking and smoking cessation on health outcomes. This may be because of the differences in smoking behaviour and/or genetic, environmental or lifestyle-related factors between countries; although the differences in factors related to research methodology (for example, range of age, method for identification of the events, levels of adjustment) between studies may also have played a part. For instance, in a study where smokers have a high average consumption of cigarettes per smoker the health hazard of smoking will be proportionally large. On the other hand, extensive passive exposure to environmental tobacco smoke either at home or in the workplace may have resulted in an underestimation of the true harms of smoking, owing to the classification of such individuals as "never smokers" in most studies (thereby ignoring their exposure to environmental tobacco smoke).⁷⁸ Other environmental air pollutants (for example, indoor coal burning), which is also a major health concern associated as it is with mortality and disability in developing regions,⁸ ⁷⁹ may also attenuate the risk for lung cancer, UADT cancer and respiratory diseases attributed to smoking.⁷⁹⁻⁸²

The present study suggests that the health hazards of smoking for CHD, stroke, lung cancer and UADT cancer have been underestimated in China, where tobacco control is particularly crucial, given that China has approximately 20% of the world's population and the Chinese consume about one-third of cigarettes smoked in the world.^{4 5} This underestimation could, in part, be due to the potentially extreme passive exposure to cigarette and/ or other environmental air pollution in China.^{4 79-83} It may well have led to a lack of awareness of the harmful effects of smoking among the Chinese; about three-quarters of smokers and twothirds of non-smokers in China regard smoking as confering

	Smoking	Pooled relative risk (95% CI) (reference: never)									
Disease status		China	Japan	Korea	Other Asia						
Coronary heart disease											
		Events: 421	Events: 1205	Events: 5540	Events: 608*						
	Former	1.25 (0.83 to 1.86)	1.51 (1.20 to 1.90)	1.57 (0.91 to 2.71)	1.12 (0.94 to 1.33)						
	Current	1.68 (1.03 to 2.74)	2.60 (2.19 to 3.09)	1.90 (1.48 to 2.44)	1.47 (1.13 to 1.91)						
Stroke											
		Events: 8479	Events: 14 343	Events: 9325	Events: 540*						
	Former	1.08 (0.86 to 1.36)	1.03 (0.89 to 1.18)	1.10 (1.01 to 1.19)	1.40 (1.15 to 1.71)						
	Current	1.25 (1.18 to 1.31)	1.39 (1.20 to 1.62)	1.60 (1.55 to 1.65)	1.36 (0.99 to 1.85)						
Lung cancer											
		Events: 1729	Events: 2497*	Events: 5030	Events: 1411*						
	Former	1.96 (1.38 to 2.79)	2.09 (1.73 to 2.53)	1.94 (1.69 to 2.23)	2.42 (1.82 to 3.22)						
	Current	2.78 (1.63 to 4.75)	4.01 (3.52 to 4.57)	3.19 (2.02 to 5.06)	3.78 (2.45 to 5.81)						
UADT cancer											
		Events: 101	Events: 356	Events: 1344	Events: 248						
	Former	0.62 (0.21 to 1.80)	1.61 (0.82 to 3.14)	2.25 (1.11 to 4.57)	0.96 (0.57 to 1.60)						
	Current	1.46 (0.89 to 2.39)	2.74 (1.60 to 4.71)	3.99 (2.32 to 6.85)	2.07 (0.79 to 5.45)						
Gastric cancer											
			Events: 3183	Events: 8197	Events: NA*						
	Former	NA	1.40 (1.20 to 1.64)	1.21 (0.87 to 1.68)	1.70 (0.89 to 3.25)						
	Current	NA	1.50 (1.29 to 1.74)	1.18 (0.71 to 1.94)	1.57 (0.88 to 2.81)						
Other cancers											
			Events: 5500	Events: 15 451	Events: 845*						
	Former	NA	1.18 (1.06 to 1.31)	1.23 (1.11 to 1.36)	1.14 (0.87 to 1.50)						
	Current	NA	1.33 (1.20 to 1.47)	1.10 (0.95 to 1.28)	1.21 (0.78 to 1.89)						
Respiratory diseases											
		Events: 43	Events: 252		Events: 741*						
	Former	1.77 (0.76 to 4.12)	1.47 (0.99 to 2.18)	NA	1.56 (1.26 to 1.93)						
	Current	1.60 (0.65 to 3.93)	1.56 (1.07 to 2.26)	NA	1.35 (1.10 to 1.64)						

Table 2 Pooled relative risks for incidence and mortality combined in former smokers and current smokers with never smokers serving as the referent group by country

*Some studies did not report their number of events: only those with numbers specified included.

UADT cancer included oesophageal, oral, nasopharyngeal and laryngeal cancer.

Other cancers included colon, rectum, liver, gallbladder, pancreas, skin, breast, uterus, ovary, prostate, bladder, kidney, ureter, brain, thyroid cancer, lymphoma, multiple myeloma and leukaemia.

Other Asian countries included Hong Kong, India, Singapore, Taiwan and Thailand.

NA, not available; UADT cancer, upper aero-digestive tract cancer.

negligible harm, and less than 10% of Chinese people know that smoking causes CHD.¹⁴ To some extent, this is also true in other Asian countries.^{7 15 16} This unfavourable phenomenon among Asians contrasts with the almost universal recognition of the causal associations of smoking and (particularly) CHD, stroke and lung cancer among people in the West.^{6 7}

This study has some limitations. First, a number of the included studies explored the RRs for disease-specific mortality without excluding participants who had a history of the disease of interest at baseline, so that true incidence was not always found. Second, smoking status was only recorded at study baseline, but is certain to have changed over follow-up for many participants. Third, smoking status is crudely defined-for example, not including number of years of smoking or average amounts smoked, but the broad categorisation has increased the number of studies available for inclusion and otherwise controlled variability. Forth, the categories of UADT cancer and other cancers were heterogeneously composed, and the RRs for smoking in different anatomical sites may have varied.63 Finally, this meta-analysis was restricted to English-language publications in order to minimise bias that may have been introduced by our inability to access local-language journals and to maximise study quality.⁸⁴ However, we acknowledge that preclusion of non-English studies has the potential to have introduced publication bias into the analyses.

What is already known on this subject

Smoking is hazardous for cardiovascular diseases, cancer and respiratory diseases, but quitting smoking reverses the harmful effects of smoking on diseases that are closely associated with smoking.

What this study adds

This study provides the most reliable estimates as to the association between smoking, quitting and cause-specific illness in Asian populations, indicating that smoking is unquestionably a major contributor to ill health and death; however, the beneficial effects of quitting are not yet always apparent, most probably because quitting is a consequence of ill health and the relative unpopularity of smoking cessation in many Asian populations.

In contrast to the West which has witnessed a steady decline in the prevalence of smoking over the last few decades owing in part to widespread awareness of the harms that smoking does, many tens of millions of smokers across Asia remain oblivious

Review article

to the hazards of cigarette smoking. This review provides the most reliable evidence to date of the impact of smoking on a broad array of illnesses specifically in Asian populations and offers convincing evidence as to the likely benefits from quitting the habit. Such information is essential for effective public health campaigns that aim to convince smokers across Asia to quit and dissuade others from taking up the habit, in order to prevent the many millions of smoking-related deaths that are predicted to occur in the next couple of decades, if current smoking patterns in Asia persist.

Funding: None.

Competing interests: None.

Contributors: KN, RH and MW conceived and designed the research. KN and AAM conducted the systematic review. KN, RH, AAM and MW interpreted the data. AAM performed statistical analysis. MW handled supervision. KN drafted the manuscript. RH, AAM and MW made critical revision of the manuscript. KN is guarantor.

Provenance and peer review: Not commissioned; externally peer reviewed.

REFERENCES

- Doll R, Hill AB. Smoking and carcinoma of the lung; preliminary report. BMJ 1950;2:739–48.
- Doll R, Hill AB. The mortality of doctors in relation to their smoking habits; a preliminary report. BMJ 1954;1:1451–5.
- Molarius A, Parsons RW, Dobson AJ, et al, WHO MONICA Project. Trends in cigarette smoking in 36 populations from the early 1980s to the mid-1990s: findings from the WHO MONICA Project. Am J Public Health 2001;91: 206–12.
- 4. Mackay J, Eriksen M. The tobacco atlas. Geneva: World Health Organization, 2002.
- Chan M. WHO report on the global tobacco epidemic 2008: fresh and alive. Geneva: World Health Organization, 2008.
- Siahpush M, McNeill A, Hammond D, et al. Socioeconomic and country variations in knowledge of health risks of tobacco smoking and toxic constituents of smoke: results from the 2002 International Tobacco Control (ITC) Four Country Survey. *Tob Control* 2006;15(suppl 3):iii65–70.
- Steptoe A, Wardle J, Cui W, et al. An international comparison of tobacco smoking, beliefs and risk awareness in university students from 23 countries. Addiction 2002;97:1561–71.
- Ezzati M, Lopez AD, Rodgers A, et al, Comparative Risk Assessment Collaborating Group. Selected major risk factors and global and regional burden of disease. *Lancet* 2002;360:1347–60.
- Ezzati M, Lopez AD. Estimates of global mortality attributable to smoking in 2000. Lancet 2003;362:847–52.
- Martiniuk AL, Lee CM, Lam TH, *et al*, Asia Pacific Cohort Studies Collaboration. The fraction of ischaemic heart disease and stroke attributable to smoking in the WHO Western Pacific and South-East Asian regions. *Tob Control* 2006;15:181–8.
- 11. **Ezzati M**, Lopez AD. Regional, disease specific patterns of smoking-attributable mortality in 2000. *Tob Control* 2004;**13**:388–95.
- Sung HY, Wang L, Jin S, et al. Economic burden of smoking in China, 2000. Tob Control 2006;15(suppl 1):i5–11.
- Department of Health of the Government of the Hong Kong Special Administrative Region. Pattern of smoking in Hong Kong. http://www.tco.gov.hk/ english/infostation/infostation sta 01.html#a2 (accessed 14 April 2009).
- 14. **Yang G**, Fan L, Tan J, *et al.* Smoking in China: findings of the 1996 National Prevalence Survey. *JAMA* 1999;**282**:1247–53.
- Ministry of Health, Labour and Welfare of Japan. The survey for smoking and health problems in Japan, 1999. http://www1.mhlw.go.jp/houdou/1111/h1111-2_11. html#no5 [in Japanese] (accessed 9 October 2008).
- Morrow M, Ngoc DH, Hoang TT, et al. Smoking and young women in Vietnam: the influence of normative gender roles. Soc Sci Med 2002;55:681–90.
- Asia Pacific Cohort Studies Collaboration. Determinants of cardiovascular disease in the Asia Pacific region: protocol for a collaborative overview of cohort studies. CVD Prev 1999;2:281–9.
- Woodward M, Barzi F, Martiniuk A, et al. Cohort profile: The Asia Pacific Cohort Studies Collaboration. Int J Epidemiol 2006;35:1412–6.
- Asia Pacific Cohort Studies Collaboration. Smoking, quitting, and the risk of cardiovascular disease among women and men in the Asia-Pacific region. Int J Epidemiol 2005;34:1036–45.
- Huxley R, Jamrozik K, Lam TH, et al, Asia Pacific Cohort Studies Collaboration. Impact of smoking and smoking cessation on lung cancer mortality in the Asia-Pacific region. Am J Epidemiol 2007;165:1280–6.
- 21. Woodward Ni. Epidemiology: study design and data analysis. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC, 2005.
- Ross RK, Yuan JM, Henderson BE, et al. Prospective evaluation of dietary and other predictors of fatal stroke in Shanghai, China. Circulation 1997;96:50–5.

- Yuan JM, Ross RK, Chu XD, et al. Prediagnostic levels of serum beta-cryptoxanthin and retinol predict smoking-related lung cancer risk in Shanghai, China. Cancer Epidemiol Biomarkers Prev 2001;10:767–73.
- Fan Y, Yuan JM, Wang R, et al. Alcohol, tobacco, and diet in relation to esophageal cancer: the Shanghai Cohort Study. Nutr Cancer 2008;60:354–63.
- Lam TH, He Y, Shi QL, et al. Smoking, quitting, and mortality in a Chinese cohort of retired men. Ann Epidemiol 2002;12:316–20.
- Astrakianakis G, Seixas NS, Ray R, et al. Lung cancer risk among female textile workers exposed to endotoxin. J Natl Cancer Inst 2007;99:357–64.
- Kelly TN, Gu D, Chen J, et al. Cigarette smoking and risk of stroke in the Chinese adult population. Stroke 2008;39:1688–93.
- Qiao YL, Taylor PR, Yao SX, et al. Risk factors and early detection of lung cancer in a cohort of Chinese tin miners. Ann Epidemiol 1997;7:533–41.
- Qiu D, Mei J, Tanihata T, et al. A cohort study on cerebrovascular disease in middleaged and elderly population in rural areas in Jiangxi Province, China. J Epidemiol 2003;13:149–56.
- Shibata A, Fukuda K, Toshima H, et al. The role of cigarette smoking and drinking in the development of liver cancer: 28 years of observations on male cohort members in a farming and fishing area. Cancer Detect Prev 1990;14:617–23.
- Akiba S. Analysis of cancer risk related to longitudinal information on smoking habits. Environ Health Perspect 1994;102(suppl 8):15–9.
- Kono S, Ikeda M, Tokudome S, et al. Smoking and mortalities from cancer, coronary heart disease and stroke in male Japanese physicians. J Cancer Res Clin Oncol 1985;110:161–4.
- Kinjo Y, Beral V, Akiba S, et al. Possible protective effect of milk, meat and fish for cerebrovascular disease mortality in Japan. J Epidemiol 1999;9:268–74.
- Marugame T, Sobue T, Satoh H, et al. Lung cancer death rates by smoking status: comparison of the Three-Prefecture Cohort study in Japan to the Cancer Prevention Study II in the USA. Cancer Sci 2005;96:120–6.
- Koizumi Y, Tsubono Y, Nakaya N, *et al.* Cigarette smoking and the risk of gastric cancer: a pooled analysis of two prospective studies in Japan. *Int J Cancer* 2004;112:1049–55.
- Kato I, Tominaga S, Ito Y, et al. A prospective study of atrophic gastritis and stomach cancer risk. Jpn J Cancer Res 1992;83:1137–42.
- Mizoue T, Tokui N, Nishisaka K, et al. Prospective study on the relation of cigarette smoking with cancer of the liver and stomach in an endemic region. Int J Epidemiol 2000;29:232–7.
- Pham TM, Fujino Y, Tokui N, et al. Mortality and risk factors for stroke and its subtypes in a cohort study in Japan. Prev Med 2007;44:526–30.
- Pham TM, Fujino Y, Ide R, et al. Mortality attributable to cigarette smoking in a cohort study in Japan. Eur J Epidemiol 2007;22:599–605.
- Iso H, Date C, Yamamoto A, et al, JACC Study Group. Smoking cessation and mortality from cardiovascular disease among Japanese men and women: the JACC Study. Am J Epidemiol 2005;161:170–9.
- Ando M, Wakai K, Seki N, et al, JACC Study Group. Attributable and absolute risk of lung cancer death by smoking status: findings from the Japan Collaborative Cohort Study. Int J Cancer 2003;105:249–54.
- Sakata K, Hoshiyama Y, Morioka S, et al, JACC Study Group. Smoking, alcohol drinking and esophageal cancer: findings from the JACC Study. J Epidemiol 2005;15(suppl 2):S212–9.
- Fujino Y, Mizoue T, Tokui N, et al, JACC Study Group. Cigarette smoking and mortality due to stomach cancer: findings from the JACC Study. J Epidemiol 2005;15(suppl 2):S113–9 (errata: J Epidemiol 2005;15:197).
- Wakai K, Hayakawa N, Kojima M, et al, JACC Study Group. Smoking and colorectal cancer in a non-Western population: a prospective cohort study in Japan. J Epidemiol 2003;13:323–32.
- Fujita Y, Shibata A, Ogimoto I, *et al*. The effect of interaction between hepatitis C virus and cigarette smoking on the risk of hepatocellular carcinoma. *Br J Cancer* 2006;94:737–9.
- Yagyu K, Kikuchi S, Obata Y, et al, JACC Study Group. Cigarette smoking, alcohol drinking and the risk of gallbladder cancer death: a prospective cohort study in Japan. Int J Cancer 2008;122:924–9.
- Lin Y, Tamakoshi A, Kawamura T, *et al*, JACC Study Group. Japan Collaborative Cohort. A prospective cohort study of cigarette smoking and pancreatic cancer in Japan. *Cancer Causes Control* 2002;13:249–54.
- Washio M, Mori M, Sakauchi F, et al, JACC Study Group. Risk factors for kidney cancer in a Japanese population: findings from the JACC Study. J Epidemiol 2005;15(suppl 2):S203–11.
- Niwa Y, Wakai K, Suzuki S, et al, JACC Study Group. Cigarette smoking and the risk of ovarian cancer in the Japanese population: findings from the Japanese Collaborate Cohort study. J Obstet Gynaecol Res 2005;31:144–51.
- Lin Y, Kikuchi S, Tamakoshi K, et al, Japan Collaborative Cohort Study Group for Evaluation of Cancer Risk. Active smoking, passive smoking, and breast cancer risk: findings from the Japan Collaborative Cohort Study for Evaluation of Cancer Risk. J Epidemiol 2008;18:77–83.
- Ide R, Mizoue T, Fujino Y, et al, JACC Study Group. Cigarette smoking, alcohol drinking, and oral and pharyngeal cancer mortality in Japan. Oral Dis 2008;14:314–9.
- Baba S, Iso H, Mannami T, et al, JPHC Study Group. Cigarette smoking and risk of coronary heart disease incidence among middle-aged Japanese men and women: the JPHC Study Cohort I. Eur J Cardiovasc Prev Rehabil 2006;13:207–13.
- Mannami T, Iso H, Baba S, et al, Japan Public Health Center-Based Prospective Study on Cancer and Cardiovascular Disease Group. Cigarette smoking and risk of

stroke and its subtypes among middle-aged Japanese men and women: the JPHC Study Cohort I. *Stroke* 2004;**35**:1248–53.

- Sobue T, Yamamoto S, Hara M, et al, JPHC Study Group. Japanese Public Health Center. Cigarette smoking and subsequent risk of lung cancer by histologic type in middle-aged Japanese men and women: the JPHC study. Int J Cancer 2002;99:245–51.
- Sasazuki S, Sasaki S, Tsugane S, Japan Public Health Center Study Group. Cigarette smoking, alcohol consumption and subsequent gastric cancer risk by subsite and histologic type. Int J Cancer 2002;101:560–6.
- Otani T, Iwasaki M, Yamamoto S, *et al*, Japan Public Health Center-based Prospective Study Group. Alcohol consumption, smoking, and subsequent risk of colorectal cancer in middle-aged and elderly Japanese men and women: Japan Public Health Center-based prospective study. *Cancer Epidemiol Biomarkers Prev* 2003;12:1492–500.
- Luo J, Iwasaki M, Inoue M, et al, JPHC Study Group. Body mass index, physical activity and the risk of pancreatic cancer in relation to smoking status and history of diabetes: a large-scale population-based cohort study in Japan—the JPHC study. Cancer Causes Control 2007;18:603–12.
- Hanaoka T, Yamamoto S, Sobue T, *et al*, Japan Public Health Center-Based Prospective Study on Cancer and Cardiovascular Disease Study Group. Active and passive smoking and breast cancer risk in middle-aged Japanese women. *Int J Cancer* 2005;114:317–22.
- Nishino Y, Suzuki Y, Ohmori K, et al. Cancer incidence profiles in the Miyagi Cohort Study. J Epidemiol 2004;14(suppl 1):S7–11.
- Akhter M, Kuriyama S, Nakaya N, et al. Alcohol consumption is associated with an increased risk of distal colon and rectal cancer in Japanese men: the Miyagi Cohort Study. Eur J Cancer 2007;43:383–90.
- Fujisawa K, Takata Y, Matsumoto T, et al. Impact of smoking on mortality in 80year-old Japanese from the general population. *Gerontology* 2008;54:210–6.
- Jee SH, Suh I, Kim IS, et al. Smoking and atherosclerotic cardiovascular disease in men with low levels of serum cholesterol: the Korea Medical Insurance Corporation Study. JAMA 1999;282:2149–55.
- Jee SH, Samet JM, Ohrr H, et al. Smoking and cancer risk in Korean men and women. Cancer Causes Control 2004;15:341–8.
- Odongua N, Chae YM, Kim MR, et al. Associations between smoking, screening, and death caused by cervical cancer in Korean women. Yonsei Med J 2007;48:192–200.
- Jee SH, Park J, Jo I, et al. Smoking and atherosclerotic cardiovascular disease in women with lower levels of serum cholesterol. Atherosclerosis 2007;190:306–12.
- Ho SC, Zhan SY, Tang JL, et al. Smoking and mortality in an older Chinese cohort. J Am Geriatr Soc 1999;47:1445–50.
- Lam TH, Li ZB, Ho SY, et al. Smoking, quitting and mortality in an elderly cohort of 56,000 Hong Kong Chinese. Tob Control 2007;16:182–9.
- Jayalekshmy PA, Akiba S, Nair MK, et al. Bidi smoking and lung cancer incidence among males in Karunagappally cohort in Kerala, India. Int J Cancer 2008;123:1390–7.

- Yuan JM, Stram DO, Arakawa K, et al. Dietary cryptoxanthin andreduced risk of lung cancer: the Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev 2003:12:890–8.
- Tsong WH, Koh WP, Yuan JM, et al. Cigarettes and alcohol in relation to colorectal cancer: the Singapore Chinese Health Study. Br J Cancer 2007;96:821–7.
- Friborg JT, Yuan JM, Wang R, et al. A prospective study of tobacco and alcohol use as risk factors for pharyngeal carcinomas in Singapore Chinese. Cancer 2007;109:1183–91.
- Chen CL, Hsu LI, Chiou HY, et al, Blackfoot Disease Study Group. Ingested arsenic, cigarette smoking, and lung cancer risk: a follow-up study in arseniasis-endemic areas in Taiwan. JAMA 2004;292:2984–90.
- Hsu HC, Pwu RF. Too late to quit? Effect of smoking and smoking cessation on morbidity and mortality among the elderly in a longitudinal study. *Kaohsiung J Med Sci* 2004;20:484–91.
- Wen CP, Cheng TY, Lin CL, et al. The health benefits of smoking cessation for adult smokers and for pregnant women in Taiwan. Tob Control 2005;14(suppl 1):i56–61.
- Yang G, Ma J, Chen A, *et al.* Smoking cessation in China: findings from the 1996 national prevalence survey. *Tob Control* 2001;10:170–4.
- Thun MJ, Apicella LF, Henley SJ. Smoking vs other risk factors as the cause of smoking-attributable deaths: confounding in the courtroom. JAMA 2000;284:706–12.
- Doll R, Peto R, Boreham J, et al. Mortality in relation to smoking: 50 years' observations on male British doctors. BMJ 2004;328:1519.
- McGhee SM, Ho SY, Schooling M, et al. Mortality associated with passive smoking in Hong Kong. BMJ 2005;330:287–8.
- Lin HH, Murray M, Cohen T, et al. Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. Lancet 2008;372:1473–83.
- Bruce N, Perez-Padilla R, Albalak R. Indoor air pollution in developing countries: a major environmental and public health challenge. *Bull World Health Organ* 2000;78:1078–92.
- 81. Lan **Q**, Chapman RS, Schreinemachers DM, *et al*. Household stove improvement and risk of lung cancer in Xuanwei, China. *J Natl Cancer Inst* 2002;**94**:826–35.
- Chapman RS, He X, Blair AE, et al. Improvement in household stoves and risk of chronic obstructive pulmonary disease in Xuanwei, China: retrospective cohort study. BMJ 2005;331:1050.
- Gu D, Wu X, Reynolds K, *et al*, InterASIA Collaborative Group. Cigarette smoking and exposure to environmental tobacco smoke in China: the International Collaborative Study of Cardiovascular Disease in Asia. *Am J Public Health* 2004;94:1972–6.
- Moher D, Fortin P, Jadad AR, *et al*. Completeness of reporting of trials published in languages other than English: implications for conduct and reporting of systematic reviews. *Lancet* 1996;347:363–6.